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Abstract

The Segment Anything Model (SAM) [10] is a pow-
erful prompt-able image segmentation model that allows
for zero-shot performance transfer. We propose a pipeline
that automatically segments brain tumors within MRI im-
ages. Given the prompt-able nature of SAM, we utilize Vi-
sion Language Models (VLMs) to automate the process of
bounding box prompt generation to help SAM focus on spe-
cific regions in MRI images. We fine-tune SAM on the 2024
Brain Tumor Segmentation (BraTS) Challenge dataset [4]
and perform data augmentation to enhance its robustness
against imperfect bounding box prompts. Our contribution
is an automated pipeline for brain tumor segmentation that
starts with a VLM for bounding box generation and ends
with a fine-tuned SAM model for mask prediction. The per-
formance of this pipeline surpasses that of a state-of-the-
art model, demonstrating the validity of our pipeline and its
contribution. By automating and enhancing this segmen-
tation process, our proposed pipeline could save time and
cost for both patients and physicians in real-life scenarios.

1. Introduction

The Segment Anything Model (SAM) [10] is a prompt-
able image segmentation foundation model that allows for
zero-shot performance transfer. It supports three types of
prompts to help SAM identify objects of interest in an im-
age: points, boxes, and masks. Meanwhile, recent advance-
ments in foundation Vision Language Models (VLMs) have
sparked growing interest in applying them to a wide range

of downstream and domain-specific tasks.

Automatic brain image image segmentation is an impor-
tant task with significant real-life implications, for it can
help physicians and neurosurgeons diagnose the existence
of brain tumors, classify tumor types, and even identify re-
gions to perform surgeries on. An automatic segmentation
technique can save ample time for physicians and reduce
the monetary costs of patients who suffer from brain tu-
mors. The cost-effectiveness of automatic image segmen-
tation also allows patients to monitor the development of
brain tumors by periodically observing changes in sizes and
shapes of brain tumors with the help of automatic image
segmentation.

We propose a fully automated inference pipeline that uti-
lizes the power of large pre-trained foundation segmenta-
tion models and VLMs to automate brain tumor segmenta-
tion. Specifically, the pipeline involves feeding a brain MRI
image into a VLM or object detection model and asking it
to generate a predicted bounding box around the brain tu-
mor region; then, the pipeline uses the MRI image as input
and the bounding box as prompt to ask SAM, fine-tuned us-
ing augmented data, to predict a brain tumor segmentation
mask. Our experiments found that the performance of our
proposed pipeline surpasses that of a state-of-the-art med-
ical image segmentation model, highlighting our contribu-
tion to the field of brain tumor segmentation.

2. Related Work

Brain tumor segmentation is a long-standing challenge in
medical image analysis, with numerous methods developed
ranging from traditional image processing to recent deep
learning approaches. We categorize the related work into
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Figure 1. Proposed inference pipeline.

four main groups: (1) classical and atlas-based methods, (2)
CNN-based segmentation models, (3) transformer-based
segmentation models, and (4) prompt-based and vision-
language-guided segmentation.

Classical and Atlas-Based Methods Early work on brain
tumor segmentation often relied on intensity thresholding,
region growing, and atlas-based approaches. Methods like
the one proposed by Prastawa et al. (2003) employed statis-
tical atlases to detect abnormalities as outliers from normal
brain anatomy [16]. While interpretable, these techniques
often struggled with tumor variability in shape and inten-
sity. Similarly, the use of fuzzy clustering methods [22]
was sensitive to initialization and noise.

CNN-Based Segmentation Models The advent of deep
learning brought significant improvements. The U-Net ar-
chitecture [19] became the de facto baseline due to its
encoder-decoder structure and skip connections. Variants
like nnU-Net [8] further automated architecture tuning and
preprocessing, achieving state-of-the-art results on BraTS
benchmarks. DeepMedic [9] explored 3D CNNs and multi-
scale processing to better capture context. However, CNN-
based models are typically trained in a fully supervised
manner, requiring pixel-level labels, and lack flexibility in
inference-time guidance.

Transformer-Based Segmentation Models Transformers
have recently gained traction in medical imaging for their
ability to model long-range dependencies. TransUNet [2]
and Swin-Unet [1] integrate transformer blocks with CNNs
to balance local and global features. These models outper-
form traditional CNNs in certain tasks, especially when spa-
tial relationships are important. However, they are still fully
supervised and require extensive labeled data to generalize
well to new domains such as brain MRIs.

Prompt-Based and Vision-Language-Guided Segmenta-
tion Prompt-based segmentation offers a new paradigm by
allowing models to adapt at inference time using guiding
inputs like points, boxes, or masks. The Segment Any-
thing Model (SAM) [10] exemplifies this approach, achiev-
ing strong generalization on natural images through training
on over a billion masks. Despite impressive zero-shot gen-
eralization to natural images, its performance on domain-
specific data like medical imaging is limited without adap-
tation. To address this, several studies have explored
fine-tuning or adapting SAM for medical domains. Med-

SAM [14] fine-tunes SAM on CT and MRI data, demon-
strating significant improvements in medical segmentation
tasks. Zhang et al. [23] provide a comprehensive review
of SAM’s applications in medical imaging, outlining both
its current potential and the challenges in transferring its
capabilities to specialized domains. Methods like SAM-
Adapter [3] introduce lightweight task-specific adapters
that condition SAM on additional domain-specific infor-
mation, yielding improvements in underperforming scenes
such as polyp and lesion detection. Meanwhile, Grounded
SAM [17] combines open-set object detectors like Ground-
ing DINO [13] with SAM to enable language-driven seg-
mentation, though its direct use in medical imaging remains
an open area for investigation. In parallel, Vision-Language
Models (VLMs) such as BLIP-2 [[11] and MedCLIP [21]]
offer a means of generating segmentation prompts auto-
matically from textual or visual cues. Most relevant to
our work is Learning to Prompt, introduced by Huang et
al. [6], which trains a model to generate optimal prompts
(e.g., bounding boxes) to guide SAM for improved segmen-
tation. This automated prompting strategy bridges the gap
between general-purpose foundation models and the speci-
ficity required in medical imaging.

Our project builds on these insights by exploring both
fine-tuning and prompt automation strategies to enhance
SAM’s performance in brain tumor segmentation, using
MRI data from the BraTS 2024 challenge [4]].

3. Methods
3.1. Baseline

As our baseline, we use the nnU-Net [8] model pre-
trained on brain tumor datasets from previous BraTS chal-
lenges. We use the publicly available checkpoint without
further fine-tuning. Unlike SAM, nnU-Net is a fully super-
vised segmentation model that does not take any external
prompts like points or boxes as input. Instead, it directly
maps MRI slices to dense segmentation masks using pixel-
wise supervision. To ensure a fair comparison with SAM
which operates 2D RGB images, we extract the same MRI
slice used for SAM and convert it to a 3-channel format
before feeding it to nnU-Net. This ensures both models
receive consistent input data despite their differing archi-
tectures and supervision paradigms, providing a strong ref-
erence point for evaluating how well prompt-based models
like SAM perform under low-supervision or zero-shot set-
tings.

3.2. Segment Anything Model

The Segment Anything Model (SAM) is a state-of-the-
art prompt-able image segmentation foundation model that
allows zero-shot performance transfer. SAM was pre-
trained on a dataset that consists of 11M diverse and high-



resolution images along with 1.1B segmentation masks
[10]. The model architecture contains three components:
an image encoder, a prompt encoder, and a mask decoder.
The image encoder is a Masked-Auto-Encoding pre-trained
Vision Transformer. In additional to accepting images as
inputs, SAM accepts two sets of prompts: sparse (points,
boxes, text) and dense (masks). For the sparse prompts,
points and boxes are represented by positional encodings
and their learned embeddings, along with text embeddings
generated from CLIP. Dense mask prompts are embed-
ded with convolution networks. However, even though
text prompt is mentioned in the original paper, the imple-
mented model does not accept free-form text as a prompt,
as it is more of a proof-of-concept feature. The mask de-
coder turns the combination of an input image embedding,
prompt embeddings, and an output token into a segmen-
tation mask. It utilizes a modification of the Transformer
decoder block by including prompt self-attention and cross-
attention between image and prompt embeddings. For am-
biguous prompts that can correspond to multiple objects in
the image, SAM outputs 3 different masks along with their
confidence scores. We can also ask the model to output
the mask with the highest confidence score during evalua-
tion/training for ambiguous prompts. However, we use the
single-mask mode of SAM in our experiments, which out-
puts the single-mask prediction with the highest confidence
score, since we believe that users would normally want a
single predicted mask for convenience, and our experiments
should reflect performance applicable to real-world settings.
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Figure 2. Segment Anything Model Architecture [[10]

3.3. Prompting the Segment Anything Model

Given the prompt-able feature of the Segment Anything
Model, we wanted to utilize Vision Language Models
and/or Object Detection Models to help SAM perform the
brain tumor segmentation task. We hypothesized that pro-
viding correct points or boxes as prompts to SAM can help
SAM correctly focus on specific regions to identify the ob-
jects or regions of interest, which in our case are the brain
tumor regions, and generate correct segmentation masks.
However, users often do not have the correct point or box
prompts when using SAM in real life. Therefore, we want
to evaluate the performance of using a Vision Language
Model and/or Object Detection Model to automate the pro-
cess of prompt-generation for brain tumor segmentation.

To identify the best type of prompt to supply to SAM for
our task, we evaluated and compared the performance of the
Segment Anything Model when feeding in three different

types of prompts generated from the ground-truth brain tu-
mor masks: center point, 20 randomly sampled points, and
bounding box of the ground truth tumor mask. The precise
definition and the process of constructing these prompts are
described in Section[d] In addition to helping us identify the
best type of prompt to use, this evaluation establishes our
baseline performance by helping us better assess the zero-
shot performance of SAM, without any fine-tuning, on brain
tumor segmentation.

Based on the evaluation results [A] we can draw the fol-
lowing conclusions. First, using only the center point of the
ground-truth mask does not really help SAM focus on the
desired region. The model often just segment out the en-
tire brain in the MRI. Given the irregular shapes of brain
tumors, the center of the tumor region may not lie in the
tumor itself, as shown in Figure@ This can also create am-
biguities when asking the Vision Language Model to locate
the center of a possible tumor region. Second, when us-
ing randomly sampled points within the ground-truth tumor
mask, SAM often generates mask predictions that are not
consistent and do not form an enclosed region, as shown in
Figure[6] Overall, ground-truth bounding-box prompts lead
to better zero-shot performance, as they can help SAM bet-
ter focus on a specific area. Moreover, the irregular shapes
of brain tumors hinder SAM’s zero-shot performance, as the
model often detects the “smoothened” region, as shown in
Figure[/| This suggests that further fine-tuning SAM to the
BraTsS dataset is necessary as it could help the model gain a
better understanding of the various shapes of brain tumors.

The performance difference when using different types
of prompts is supported by the quantitative results based
on evaluation metrics described in Section[5.l Table [T ex-
hibits the DSC and HD95 values for the output masks pre-
dicted by SAM given each of the three types of ground-
truth generated prompts. We can see that using bounding
boxes as prompts to SAM led to the highest DSC and low-
est HD95, indicating that it has the best performance. Based
on these evaluation results for using ground-truth generated
prompts, we decided to use bounding box as our chosen
type of prompt that we will ask a Vision Language Model
to generate, given its better performance. We will also use
bounding boxes as prompts to fine-tune SAM.

DSC HD95
center point as prompt 0.3612 | 54.34 pixels
20 random points as prompt | 0.5102 | 51.39 pixels
bounding box as prompt 0.7623 | 10.36 pixels

Table 1. Evaluation Results of SAM Given Ground-Truth Gener-
ated Prompts

3.4. Bounding Box Selection

We experimented with both open-source zero-shot multi-
model Vision Language Models (VLM) and zero-shot Ob-



ject Detection Models for generating the bounding boxes
of brain tumors, including Qwen2-VL-7B-Instruct by Al-
ibaba Rsearch [20], MedGemma by Google [3], Blip-Vqa
by Salesforce [[12], and GroundingDino by IDEA-Research
[13]. We found that MedGemma has the best performance
on zero-shot brain tumor detection.

MedGemma is a Gemma 3 variant that is trained
on medical text and/or images for comprehension tasks.
MedGemma comes in two variants: a 4B multimodal ver-
sion and a 27B text-only version. We used the 4B multi-
modal version for the bounding box generation.

MedGemma 4B utilizes a SigLIP image encoder that has
been pre-trained on a variety of medical data, such as chest
X-rays, dermatology images, ophthalmology images, and
histopathology slides. Its LLM component is pre-trained on
a set of medical data, such as radiology images, histopathol-
ogy patches, ophthalmology images, dermatology images,
and medical text.

The better zero-shot performance on MedGemma is ex-
pected as it was specifically trained on medical image and
text data. See Appendix Section [B|for the prompt we used
for the MedGemma model.

In contrast, Blip-Vqa and GroundingDINO, despite be-
ing a strong open-set object detector in natural image do-
mains, failed to detect tumors in our MRI datasets. This is
likely due to a domain mismatch and the models’ lack of
exposure to grayscale medical imaging. These results sug-
gest that current zero-shot object detection methods do not
generalize well to brain tumor detection tasks, especially in
the medical domain. Therefore, we excluded these models
from further experimentation.

In additional to the open-source models, we also exper-
imented with using one-shot example, such as giving an
example MRI image with the brain tumor drawn with its
bounding box, to ask ChatGPT to generate bounding box
for the brain tumor. See Appendix Section |C| for the one-
shot example as well as the prompt used for ChatGPT.

Worth to note, we also experimented with one-shot ex-
amples when using the open-source VLM models. How-
ever, we noticed that one-shot examples tend to cause worst
behaviors. We suspect it is due to the models’ smaller pa-
rameter size and training data size vs. ChatGPT, which
make them harder to interpret prompts that they have not
seen before during training.

3.5. SAM Fine-Tuning

While SAM is a foundation model trained on a wide
variety of images and segmentation masks, it is not spe-
cialized in tasks that are highly domain-specific, such as
our brain tumor segmentation task. Therefore, we hypoth-
esize that fine-tuning SAM on a brain tumor segmentation
dataset would improve SAM’s performance on our task. We
fine-tune on the facebook/sam-vit-base pre-trained

SAM model available on Hugging Face [7]. This model
has 91M parameters [10], an adequate model size given our
computational constraints. We start from the fine-tuning
code written by Neils Rogge [18] and implement heavy
modifications to preprocess data from our dataset, optimize
running time and memory efficiency using methods like
mixed precision training, collect and visualize metrics, and
establish hyperparameter tuning pipeline, early stopping
mechanism, and inference pipeline. We conduct full-scale
fine-tuning to the mask decoder part of SAM and freeze the
image and prompt encoders. SAM’s image encoder is al-
ready well trained to extract important features from im-
ages, and the prompt encoder does not need to be changed
since our bounding box prompts should be encoded the
same way as any other bounding box, so it is reasonable
to only fine-tune on the mask decoder to help SAM adapt
to the brain tumor segmentation task while saving compute
and preventing overfitting to our relatively small dataset.

During training, each resized and normalized MRI slice
is fed to SAM as input, along with one of its associated
ground-truth or augmented bounding boxes as the prompt.
The output is a predicted tumor mask and the resized
ground-truth segmentation mask is used as supervision. We
use the DiceCELoss from MONALI [[15], which combines
Dice loss and binary cross-entropy loss to balance region
overlap and pixel-wise accuracy. The binary cross-entropy
(BCE) loss for each pixel is defined as:

N
Lyce = == > [yilog(:) + (1 = y:)log(1 = §:)] (1)
i=1

1
N

where y; € {0, 1} is the ground-truth label for pixel 4, §; €
[0, 1] is the predicted probability, and N is the total number
of pixels.

The Dice Similarity Cofficient (DSC) is explained in
Section [5.1] which quantifies the spatial overlap between
the predicted tumor region and the ground-truth mask, with
a higher score indicating better agreement. The Dice loss is
then:

»CDice =1-DSC ()

The final training loss is a weighted sum of Dice loss and
BCE loss:

LpicecE = Abice * Lbice + ABCE * LBCE 3)

3.6. Inference Procedures

Figure[]illustrates our proposed inference pipeline. This
pipeline feeds an MRI image into a VLM or object detection
model and asks the model to generate a bounding box that
captures the tumor region in the image. Then, the pipeline
resizes the bounding box generated by the VLM or object
detection model into the size accepted by SAM, then feed



it as a prompt, along with the image input, into the fine-
tuned SAM to obtain a predicted mask of the brain tumor
region in the image as output. We run (1) zero-shot infer-
ence on the MedGemma VLM and (2) one-shot inference
on ChatGPT, but they can be replaced by any other VLM
or object detection model, demonstrating the flexibility of
our pipeline. This pipeline ensures that everything can be
automated without human efforts such as manually creat-
ing bounding boxes as prompts. We evaluate on the per-
formance of our proposed pipeline and compare it against
our baseline performance. Evaluation results, along with
ablation studies showing the importance of fine-tuning in
improving performance, are described in Section [5] The
evaluation results demonstrate that our pipeline is able to
achieve superior performance compared to that of the base-
line state-of-the-art model while requiring no human effort
to provide bounding boxes.

3.7. Bounding Box Data Augmentation

We adopt a data augmentation technique such that for
each MRI image in dataset, in addition to the ground-truth
derived bounding box, we create 6 more bounding boxes
by adding random noise to each of the edge coordinates of
the ground-truth bounding box. We hypothesize that using
bounding boxes with noises as prompts during fine-tuning
would help SAM generalize to situations where the bound-
ing boxes are imperfectly constructed, which would be ben-
eficial to our inference pipeline since bounding boxes gen-
erated by VLMs are almost always imperfect. Therefore,
using these augmented bounding boxes as prompts during
training should force the model to be more robust to poorly
constructed bounding boxes by relying less on bounding
boxes for brain tumor segmentation. Moreover, this aug-
mentation procedure effectively increases the training set
size by 7 times, which should the risk of overfitting and
help the model generalize better.

4. Dataset and Features

Our experiments are conducted on the brain tumor
dataset provided by the 2024 Brain Tumor Segmentation
(BraTS) Challenge [4]. As described in the challenge
paper, this dataset consists of multi-institutional, multi-
modal MRI scans from approximately 2,200 post-operative
glioma patients. For each case, four imaging modalities
are provided: T1-weighted (T1), T1-weighted contrast-
enhanced (T1c), T2-weighted (T2), and T2-FLAIR, along
with expert-annotated segmentation masks delineating tu-
mor sub-regions.

In the released data, we find a total of 1,809 cases. The
validation set (188 cases) does not include ground-truth la-
bels, as the challenge results are not yet finalized. There-
fore, we exclude it and instead split the training set into

1,350 training and 271 test cases (approximately a 5:1 ra-
tio), which we use for our own evaluation.

In our work, we specifically use the T2-FLAIR modality
as input for segmentation due to its effectiveness in visualiz-
ing tumor-related edema. All annotated tumor sub-regions
(enhancing tumor, tumor core, and edema) are merged into
a single binary tumor region. We do not differentiate be-
tween subtypes of tumor tissue.

Since SAM operates on 2D RGB images and the origi-
nal dataset consists of 3D volumetric scans, we extract rep-
resentative 2D slices to serve as input to both VLMs and
SAM. Specifically, we extract the 2D axial slice with the
largest tumor area from each 3D scan. Each slice is normal-
ized and converted to RGB for compatibility with SAM,
resulting in a dataset of 1,621 labeled 2D images at 218 by
182 resolution. To comform with SAM’s input and target
size requirements, we resize each input image and bound-
ing box to 1024 by 1024 resolution and resize each target
mask to 256 by 256 resolution during training and valida-
tion. Both normalization and resizing are done through the
SamProcessor class from HuggingFace [7]].

To assess the performance of SAM on brain tumor im-
age segmentation when accurate prompts are provided, we
derive from the ground-truth segmentation masks in the
dataset and generate different types of prompts for each im-
age:

* Center point prompt: geometric center point of the
ground-truth tumor area.

* Random points prompt: randomly sampled points
from the ground-truth tumor area.

e Ground-truth bounding box prompt: minimal axis-
aligned rectangle enclosing the tumor area.

* Noised bounding box prompt: a perturbed version of
the ground-truth box, where each side is randomly ex-
panded by a value sampled uniformly from O to a max-
imum perturbation level. We experiment with maxi-
mum values of 5, 10, 15, 20, 30, 40 pixels.

Note that noised bounding box prompts are used as the
bounding box prompts when fine-tuning SAM. Since we
create 6 noise bounding boxes in addition to the ground-
truth bounding box prompt, we form a training set of 8505
examples and a validation set of 945 examples after train-
validation split by pairing each image with each of the 7
bounding boxes.

5. Experiments/Results/Discussion
5.1. Evaluation Metrics

We employ both quantitative and qualitative metrics
to comprehensively assess model performance. Quantita-
tively, we use the Dice Similarity Coefficient (DSC), the



95th Percentile Hausdorff Distance (HD95), and the Inter-
section over Union (IoU) to evaluate the overlap and spa-
tial accuracy between predicted segmentations and ground
truth masks. These metrics are standard in medical image
segmentation.
Dice Similarity Coefficient (DSC) quantifies the overlap
between a predicted segmentation region P and the corre-
sponding ground truth region G, and is defined as:
2|P NG|

DSC(P, Q) EENE “)
Intersection over Union (IoU), also known as the Jaccard
Index, is another measure of set similarity and is given by:

PN

U(P,G) = (574, 5)

95th Percentile Hausdorff Distance (HD95) measures the
spatial discrepancy between the boundaries of P and G. It
is defined as:

Percentile in d(p, ,
95 (rgrgg (p g))

HDg;(P, G) = max per

Percentilegs (min d(g, p))
peP geG

(6)
where d(a,b) denotes the Euclidean distance between
points a and b.

In addition to these quantitative metrics, we conduct
qualitative evaluations by visualizing segmentation outputs
across representative cases to assess the model’s ability to
localize and delineate tumor regions with high fidelity.

5.2. Bounding Box Evaluations

We evaluate the accuracies of the bounding boxes gener-
ated by both MedGemma and ChatGPT and compare them
against the ground-truth bounding boxes in the test set by
calculating the IoU scores between the two regions. We
can see that ChatGPT does have a meaningfully higher per-
formance in terms of bounding box generation compared
to MedGemma for brain turmors. SAM predictions with
MedGemma can show us the robustness of SAM when
given lower quality bounding boxes.

IoU 25% 50% 75% Max Mean Std Dev

MedGemma 0.13 0.21 031 0.73 0.23 0.15

ChatGPT 0.09 030 060 099 0.36 0.31

Table 2. IoU statistics summary for MedGemma and ChatGPT

5.3. SAM Fine-Tuning Hyperparameter Selection

We established a hyperparameter tuning pipeline when
fine-tuning SAM. We tried different values for learning
rates, weight decay, the number of epochs, and the choice

of optimizer (e.g., Adam vs. AdamW). Because of com-
putational constraints, running a full scale grid search on
all training and validation data is too expensive. Thus, we
hand-picked several combinations of hyperparameter val-
ues on a coarse scale, where the hand-picking process is
dynamically guided by the performance of previous hyper-
parameter value combinations. We used a random subset of
the training and validation sets for training and validation.
Specifically, we used a training set size of 1701 and a vali-
dation set size of 343 for hyperparameter tuning. We run the
model on the training subset using each hand-picked com-
bination of hyperparameter values and choices, and eval-
uate the model’s performance on the validation subset af-
ter each epoch. We record the best validation set perfor-
mance across epochs during fine-tuning, and pick the hy-
perparameter combination that yields the lowest validation
DiceCELoss. In the end, we found that a learning rate of
le—4, a weight decay of 1e—b5, a number of training epochs
of 10, and AdamW as the optimizer yields the lowest loss on
the validation subset. We did not perform cross-validation
due to heavy computational constraints.

5.4. SAM Fine-Tuning using Best Hyperparameters

We use the aforementioned best combination of hyper-
parameters to do a final training on the entire training set,
which consists of 8505 examples, except that we decrease
the number of epochs to 5 due to computational constraints.
We believe that this should not hurt the performance too
much since we observed that validation loss does not de-
crease much after 5 epochs when training on the training
subset, as we can see in Figure [I§] (note that the number of
epochs in the plot is 0-indexed). During the final training
run on the entire training set, we measured the loss on the
entire validation set, which consists of 945 examples, after
each training epoch. Figure [3] shows the training loss and
validation loss over the number of training epochs (note that
the number of epochs in the plot is 0-indexed). The lowest
validation loss, which occurs after the last epoch, is 0.2661,
and the lowest training loss is 0.2275. The plot shows that
both training and validation losses decrease over time, sug-
gesting the effectiveness of training.

Although training and validation loss curves seem to be
diverging, the validation loss curve of the full training run
is still decreasing. Moreover, although a lower learning rate
and a higher weight decay can mitigate overfitting, we ob-
served that this setup does not lead to a lower training or
validation loss. Therefore, we believe that using our cur-
rent choices of hyperparameters is reasonable regardless of
whether the loss curves seem to diverge. For example, when
using a learning rate of 1e — 6 and weight decay of 1e — 3,
although the loss curves do not diverge, as shown in Fig-
ure[T9] validation loss remains high compared to our chosen
hyperparameters despite more training epochs.



5.5. Ablation Study on Data Augmentation

The fine-tuned model and hyperparameter selection pro-
cess described in Section[5.3]and Section[5.4|uses a training
dataset that consists of examples with augmented bound-
ing boxes as prompts to SAM. We would like to investigate
whether the augmented examples can truly improve perfor-
mance. Therefore, we fine-tune on another instance of SAM
but only uses the ground-truth bounding boxes as prompts
during training and validation, so each each image in the
dataset only pairs with one bounding box. Due to computa-
tional constraints, we used the same combination of hyper-
parameters as in Section although it would be better if
we could conduct a separate hyperparameter tuning process
for this ablation study, since the optimal set of hyperparam-
eter will likely be different, although probably not to a great
extent since the training images remain the same.

Training vs. Validation Loss

—e— Training Loss
Validation Loss

0.30

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
Epoch

Figure 3. Training and validation loss over 0-indexed number of
epochs during the final training run using all training and valida-
tion data.

5.6. Test Set Segmentation Performance

We evaluate the performance of SAM after fine-tuning
on the test set for the brain tumor segmentation task and
compare the results with the results of SAM without fine-
tuning. We evaluate their performance on three types of
bounding boxes: those derived from ground-truth mask,
those generated by MedGemma, and those generated by
ChatGPT. While the latter two demonstrate the performance
of our proposed inference pipeline by providing VLM-
generated prompts to SAM, evaluating on using ground
truth bounding boxes demonstrates the full potential of
SAM when given optimal bounding boxes, which could act
as an upper bound to SAM’s performance. We also com-
pare SAM’s performance with nnU-Net, which serves as
our baseline.

DSC HD9S5 (in pixels) ToU
w/o FT & GT bbox 0.7624 10.36 0.6413
w/o FT & MedGemma bbox 0.1855 55.44 0.1172
w/o FT & ChatGPT bbox 0.4210 39.70 0.3202
w/ FT & GT bbox 0.7404 10.44 0.6055
w/ FT & MedGemma bbox 0.2707 43.17 0.1805
w/ FT & ChatGPT bbox 0.4403 32.90 0.3258
w/ small-FT|' (& GT bbox 0.7689 8.97 0.6381
w/ small-FT & MedGemma bbox | 0.2555 52.38 0.1598
w/ small-FT & ChatGPT bbox 0.4344 36.65 0.3197
nn-UNet 0.25 37.5530 0.1959

Table 3. Results.

Table[3]is a compilation of the performance of our base-
line and SAM under different settings. Comparing the per-
formance of SAM without fine-tuning, with fine-tuning, and
with fine-tuning but without data augmentation when given
bounding boxes generated by MedGemma and ChatGPT,
we can see that SAM with fine-tuning performed the best by
having the highest DSC and IoU and lowest HD9S5 scores.
This shows that fine-tuning, especially with data augmen-
tation, helps SAM become robust to low-quality bounding
boxes. The difference is especially significant with bound-
ing boxes generated by MedGemma, which have even lower
qualities than those generated by ChatGPT. Although SAM
with fine-tuning but without data augmentation performs
slightly worse, it is still better than without fine-tuning,
showing the benefit of fine-tuning regardless of data aug-
mentation.

Moreover, we see that combining fine-tuned SAM with
ChatGPT for bounding box generation, our pipeline yields
a better performance than our baseline, illustrating that our
pipeline can surpass a state-of-the-art model while being
fully automated, which highlights the contribution of our
study.

Interestingly, when using ground-truth bounding boxes
as prompts, SAM without fine-tuning performs better than
SAM with fine-tuning, although the difference is not sig-
nificant, and is still worse than SAM with fine-tuning but
without data augmentation. This shows that SAM is pow-
erful enough at brain tumor segmentation tasks as long
as high-quality bounding boxes are given, suggesting the
power of large pre-trained foundation segmentation models.
However, fine-tuning can still improve performance if we
only use ground-truth bounding boxes during training. One
possible explanation for why SAM with fine-tuning and
data augmentation performs worse is that the augmented
data help SAM generalize to low-quality bounding boxes at
the expense of worse performance when given high-quality
bounding boxes, since SAM cannot rely as much on the
quality of bounding boxes to segment brain tumor regions.

The performance gap between using ground-truth
bounding boxes and VLM generated bounding boxes indi-
cates that generating high-quality bounding boxes remains
a difficult task even for state-of-the-art VLMs or VLMs

'small-FT refers to the model fine-tuned on the smaller dataset without
Bounding Box Data Augmentation



specifically trained on medical data. This suggests that im-
proving VLM’s performance on brain tumor bounding box
generation could be a promising research direction.

5.7. Model Segmentation Visualization

Below shows the performance of zero-shot and fine-
tuned SAM when given the MedGemma generated boxes
as the prompt. We can observe that after supervised fine-
tuning on the BraTS dataset, SAM is more robust to bound-
ing boxes of lower quality [T2][4] Without fine-tuning, SAM
has the tendency to generate masks that do not form a
coherent shape when given bad bounding boxes. More-
over, we have included segmentation visualizations of zero-
shot/fine-tuned SAM across all the different models in the
Appendix [D| ChatGPT generally has higher quality bound-
ing boxes, which is reasonable given its much larger param-
eter size and the use of one-shot prompting.

Predicted Mask
with Ground Truth Box
For slice64 For slice64

. ]
0 50 00 150

Figure 4. MedGamma BBox Performance with Zero-Shot SAM
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Figure 5. MedGamma BBox Performance with FT SAM

6. Conclusion/Future Work
6.1. Conclusion

Our proposed inference pipeline involves asking a VLM
to generate bounding boxes for brain tumor regions when
given MRI images, then feeding the original images, along
with the generated bounding boxes as prompts, into the
SAM model fine-tuned with data augmentation, to produce
final predicted segmentation masks. This pipeline would be

beneficial in real-life situations when a ground-truth bound-
ing box is hard to obtain. Our evaluation results show that
the performance of our proposed pipeline surpasses the per-
formance of a state-of-the-art medical image segmentation
model, indicating our contribution to the field of brain tu-
mor segmentation. Furthermore, we find that augmenting
ground-truth bounding boxes with noise and using those as
prompting when fine-tuning SAM could help SAM become
more robust to imperfect bounding boxes generated by dif-
ferent VLMs, although the overall performance is bottle-
necked by the quality of the bounding boxes generated by
VLMs, which suggests the inherent difficulty of brain tumor
bounding box generation task. The improvement in the per-
formance of our pipeline compared to state-of-the-art model
performance has the potential of leading to real-world im-
pacts, since even a small amount of performance and accu-
racy increase could save additional lives by helping physi-
cians diagnose and monitor the tumor development progress
of patients.

6.2. Future Work

Our fine-tuning method relies on augmenting ground-
truth bounding boxes with noise to help SAM become ro-
bust to bounding boxes generated by VLMs, which tend to
have lower qualities. It would also be reasonable to directly
use bounding boxes generated by VLMs as input prompts
using training. We hypothesize that this should lead to
even better performance, especially when the training set is
large, since this creates a harder task for SAM which even-
tually could guide SAM become comfortable with bound-
ing boxes generated by a particular VLM. However, one
potential downside of fine-tuning SAM on outputs of a par-
ticular VLM could mean worse generalization if users want
to switch to using another VLM. Moreover, one could in-
vestigate whether test-time compute can lead to better per-
formance by asking a VLM to generate multiple bounding
boxes at inference time, feed each as a prompt into SAM,
and obtain a final predicted segmentation mask by taking
majority votes pixel-wise. Another future research direc-
tion is to explore fine-tuning a 3D foundation segmentation
model on brain tumor segmentation tasks using MRI im-
ages, since MRI images are often in 3D, and utilizing 3D
data could help physicians diagnose with a greater accuracy.
Lastly, if given more compute resources, more exhaustive
hyperparameter tuning and training for longer epochs would
likely further enhance model performance.



7. Contribution

June Zheng:

VLM and object detection model experimentation

MedGemma bounding box generation

SAM model test-time inference pipeline

Performance evaluation and visualization Pipeline

Final paper writing and analysis
Yi Jing:

— Data processing and ground-truth-based prompts
generation

Performance evaluation pipeline

Baseline model performance evaluation

VLM and object detection model experimentation

ChatGPT bounding box generation

Final paper writing and analysis
Komei Ryu:

— Fine-tuning SAM with and without data augmenta-
tion
— Hyperparameter tuning for fine-tuning SAM

— Final paper writing and analysis
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A. Predicted Masks of SAM Given Ground-
truth Generated Prompts
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B. Zero-Shot Prompt for MedGemma

Examine the brain MRI image. Your task is to identify the tumor region and provide
bounding box coordinates for it.

Instructions:

1. Carefully examine the image to detect visual patterns consistent with brain tumor
regions (e.g., asymmetry, hyperintensities).

2. Return the top left and bottom right coordinates of the bounding box surrounding the
tumor.

3. Double check that the coordinates of the brain tumor bounding box is in the MRI image.

Image dimensions:

- Width = 182 pixels

— Height = 218 pixels

— Coordinates must be within the range: (x = 0 to 182, y = 0 to 218)
— The upper left corner of the image has coordinate = (0, 0)

Please format your response as follows:
top left corner of the bounding box has coordinate = (x0, yO0)

bottom right corner of the bounding box has coordinate = (x1, yl)

Think step by step. Explain your reasoning in detail. Describe the location of the brain
tumor relative to the MRI image. Give the final answer in bounding box coordinates.

12



C. One-Shot Prompt for ChatGPT

To generate bounding box annotations for brain tumors
in MRI images using ChatGPT, we used a one-shot prompt-
ing strategy. Specifically, we first showed an example im-
age where the brain tumor region is highlighted in white and
surrounded by a blue bounding box. The following prompt
was then used to guide the model:

¢ Message 1 (Reference Example):

You are a neuropathologist that does brain tumor an-
notation. Here is an example MRI with the brain tu-
mor region highlighted white and a blue bounding box
around the brain tumor.

[Attached: Example MRI image with tumor and
ground truth bounding box]

Figure 10. Reference Example

e Message 2 (Query Image):

This MRI image does not have the blue bounding box.
Can you generate the bounding box around the brain
tumor and provide the coordinates?

[Attached: Unannotated MRI image for annotation]

Original Image

Figure 11. Query Image

This prompt sequence was designed to demonstrate the
expected output format using a visual reference and then re-
quest bounding box coordinates on a new image. The model

13

returns the bounding box as (xmin, ymin, xmax,
ymax) coordinates that enclose the visible tumor region.



D. Model Performance Visualizations
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Figure 16. MedGamma BBox Performance with small-FT SAM

Figure 12. MedGamma BBox Performance with Zero-Shot SAM Predicted Mask Predicted Mask
Ground Truth Mask with Ground Truth Box with Generated CHATGPT Box
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Figure 17. hatGPT BBox Performance with small-FT SAM

E. Additional Loss Curve Plots Showing Hy-

Figure 13. ChatGPT BBox Performance with Zero-Shot SAM perparameter Selection Observations
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Figure 14. MedGamma BBox Performance with FT SAM 02001
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Figure 18. Training and validation loss over 0-indexed number of
Predicted Mask Predicted Mask
G d Truth Mask h G d Truth By h G d CHATGPT B 1 1ni 1 1
round Truth Mas with Ground Truth Box - with Generated CHATGPT Box epochs during the training run of the best combination of hyperpa-
rameters on the subsets of training and validation sets.

Figure 15. ChatGPT BBox Performance with FT SAM
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Training vs. Validation Loss

—e— Training Loss
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Loss
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Figure 19. Training and validation loss over 0-indexed number of
epochs during the training run using a small learning rate on the
subsets of training and validation sets.
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